See5 Algorithm versus Discriminant Analysis
نویسندگان
چکیده
Prediction of insurance companies insolvency has arised as an important problem in the field of financial research, due to the necessity of protecting the general public whilst minimizing the costs associated to this problem. Most methods applied in the past to tackle this question are traditional statistical techniques which use financial ratios as explicative variables. However, these variables do not usually satisfy statistical assumptions, what complicates the application of the mentioned methods. In this paper, a comparative study of the performance of a well-known parametric statistical technique (Linear Discriminant Analysis) and a non-parametric machine learning technique (See5) is carried out. We have applied the two methods to the problem of the prediction of insolvency of Spanish non-life insurance companies upon the basis of a set of financial ratios. Results indicate a higher performance of the machine learning technique, what shows that this method can be a useful tool to evaluate insolvency of insurance firms.
منابع مشابه
Statistical Techniques vs. SEE5 Algorithm. An Application to a Small Business Environment
The aim of this research is to compare the accuracy of a rule induction classifier system –Quinlan’s SEE5– with linear discriminant analysis and logit. The classification task chosen is the differentiation of the most efficient companies from the least efficient ones on the basis of a set of financial variables. The sample consists of a database containing the annual accounts of the companies l...
متن کاملThe Sensitivity of Machine Learning Techniques to Variations in Sample Size: A Comparative Analysis
A comparative analysis of the performance of some well-known classification techniques (Discriminant Analysis, Quinlan’s See5, and Neural Networks) and certain machine learning systems of recent development (ARNI, FAN and SVM) is conducted. The chosen classification task is the forecasting of the level of efficiency of Spanish commercial and industrial companies. Assignment of the firms is made...
متن کاملFace Recognition by Cognitive Discriminant Features
Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...
متن کاملOptimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier
Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...
متن کاملProbabilistic Disease Classification of Expression-Dependent Proteomic Data from Mass Spectrometry of Human Serum
We have developed an algorithm called Q5 for probabilistic classification of healthy versus disease whole serum samples using mass spectrometry. The algorithm employs principal components analysis (PCA) followed by linear discriminant analysis (LDA) on whole spectrum surface-enhanced laser desorption/ionization time of flight (SELDI-TOF) mass spectrometry (MS) data and is demonstrated on four r...
متن کامل